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1  | INTRODUC TION

The expansion of shrubs observed in many tundra ecosystems 
across the Arctic region (e.g., Elmendorf et al., 2012, Myers‐Smith 
et al., 2015, Myers‐Smith et al., 2011, Myers‐Smith & Hik, 2018) has 
mainly been attributed to an increase in deciduous shrub species 
such as birch (Betula spp.), willow (Salix spp.), and alder (Alnus spp.) 
(Myers‐Smith et al., 2011). This shrub expansion, or shrubification, 
occurs mainly in three ways: through infilling of existing patches, 

through an increase in growth, or through an advancing shrubline 
(Myers‐Smith et al., 2011). The potential ecological ramifications of 
an increase in deciduous shrub cover are many and have been widely 
discussed, since they have the potential to significantly modify cli‐
mate, on several scales.

Far less attention has been given to the fact that a number of 
studies have also found a strong increase in prostrate evergreen 
shrubs in response to warming (Klanderud & Birks, 2003, Hudson 
& Henry, 2009, Wilson & Nilsson, 2009, Vowles, Gunnarsson, et al., 
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Abstract
1. Arctic shrub expansion is occurring across large parts of the tundra biome and its 

potential ecological repercussions have been widely discussed. But while the term 
“shrub expansion” often implicitly refers to an increase in tall, deciduous species 
such as birch and willow, several studies have also found a strong increase in ev‐
ergreen dwarf shrubs in response to warming, a fact which has received far less 
attention.

2. The effects of an evergreen dwarf shrub expansion are markedly different from 
the effects of an increase in taller, deciduous species. While deciduous shrubs 
may increase carbon (C) cycling through changes in albedo, litter input, and snow 
depth, the low stature of evergreen dwarf shrubs means that they are unlikely to 
influence snow cover. They also produce more recalcitrant litter, which reduces 
microbial activity. Furthermore, recent research suggests that ericoid mycorrhiza 
associated with evergreen shrubs may help to decelerate litter and soil organic 
matter turnover rates through the production of melanized hyphae that resist de‐
composition. Through selective browsing, herbivores may promote evergreen 
shrubs and facilitate C storage.

3. Synthesis. In this mini review, we argue that basing predictions of how shrub ex‐
pansion will affect tundra ecosystems on characteristics only applicable to tall 
deciduous shrubs hampers our understanding of the complex feedbacks related 
to Arctic vegetation shifts.
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2017, Vuorinen et al., 2017; see also Figure 1), species which are gen‐
erally not included in the term shrubification. The ecological conse‐
quences of a shrub expansion of evergreen dwarf shrubs, however, 
are markedly different from the effects of taller, deciduous species. 
Here, we argue that predictions of how shrub expansion will affect 
tundra ecosystems based on characteristics only applicable to de‐
ciduous shrubs, hampers our understanding of the complex ecosys‐
tem feedbacks related to arctic vegetation shifts. We outline several 
ecological differences between deciduous and evergreen shrubs and 
how they may affect ecosystem processes in opposing ways, and 
highlight the key mediating role played by herbivores.

2  | THE E XPANSION OF DECIDUOUS 
SHRUBS

The potential ecological consequences of an increase in decidu‐
ous shrub cover in tundra areas are many. Taller and denser shrub 
patches reduce albedo, especially during spring snowmelt, which 
is accelerated as branches start to emerge from the snow (Sturm, 
Douglas, Racine, & Liston, 2005), but also, depending on the veg‐
etation type, during the growing season (Blok et al., 2011; te Beest, 
Sitters, Menard, & Olofsson, 2016). Taller canopies also trap more 
snow, which acts as insulation and raises winter soil temperatures 
(Sturm et al., 2005). Higher soil temperatures can in turn increase 
both winter and summer nitrogen (N) mineralization rates (DeMarco, 
Mack, & Bret‐Harte, 2011; Schimel, Bilbrough, & Welker, 2004), lit‐
ter decomposition rates (Baptist, Yoccoz, & Choler, 2010), and winter 
respiration rates (Nobrega & Grogan, 2007).

Additionally, the increased input of more easily decomposed de‐
ciduous plant litter increases carbon (C) turnover rates, and in fact 
appears to be more important for nutrient cycling than higher soil 
temperatures (DeMarco, Mack, & Bret‐Harte, 2014; Vankoughnett & 
Grogan, 2016). Betula nana leaf litter, for instance, has been found to 
decompose faster than that of other typical competing tundra spe‐
cies (the evergreen shrubs Vaccinium vitis‐idaea and Rhododendron 
palustre as well as the graminoid Eriophorum vaginatum) (McLaren et 
al., 2017). Thus, an increase in deciduous shrub cover may trigger a 
number of processes that have the potential to accelerate C turnover 
in tundra ecosystems (Figure 2a).

2.1 | Deciduous shrubs as mycorrhizal hosts

The ectomycorrhizal (ECM) fungal partners of deciduous shrubs may 
also play a prominent role in C cycling. To what extent ECM act as de‐
composers is still under debate, but there is increasing evidence that 
some ECM species decompose soil organic matter (SOM) under cer‐
tain conditions (Bödeker et al., 2014; Koide, Sharda, Herr, & Malcolm, 
2008; Talbot, Allison, & Treseder, 2008). A review of recent ECM re‐
search proposes that ECM fungi do not regularly use organic matter as 
a source of metabolic C, but that their access to host photosynthates 
helps facilitate co‐metabolic degradation of recalcitrant organic com‐
plexes, thereby releasing N from organic pools (Lindahl & Tunlid, 2015).

An active involvement of ECM fungi in the transformation of SOM 
has been suggested to account for the lower C stocks found in moun‐
tain birch forests, compared to close by ericaceous heaths in sub‐
arctic Sweden (Hartley et al., 2012). In the forest, high plant activity 
during the middle of the growing season resulted in a larger transfer 

F I G U R E  1   (a) Number of publications per year (to 2017) in the Web of Science database generated when using the search terms (“shrub 
expansion” OR “vegetation change”) AND (tundra OR Arctic OR alpine) AND shrub for all shrubs. For deciduous shrubs, we replaced AND shrub 
with AND deciduous and for evergreen shrubs with AND evergreen. (b) Percentage distribution for all 310 publications found using the three 
search terms. A publication can only be included in one of the seven categories. For instance, if a publication occurs in the output list for the 
terms AND evergreen and AND deciduous, but not AND shrub, it will fall into the category “only both PFTs.” PFTs = Plant functional types and 
refers to deciduous and evergreen together [Colour figure can be viewed at wileyonlinelibrary.com]
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of C to the rhizosphere which stimulated the ECM fungi decomposi‐
tion of older SOM (Hartley et al., 2012). Another study, from the same 
region, found that soil C stocks were significantly lower in mountain 
birch forest and deciduous shrub tundra compared to adjacent erica‐
ceous heaths, and that the shrub tundra had the highest respiration 
rates (Parker, Subke, & Wookey, 2015). A possible explanation for the 
lower C stocks in the shrub tundra, which had significantly higher 
growth rates of fungal hyphae, is that ECM fungi decompose soil or‐
ganic C while scavenging organically bound nutrients. Although more 
work is needed in determining the exact nature of the relationship be‐
tween plant–mycorrhiza interactions and ecosystem C cycling, these 
two studies demonstrate that ECM fungal symbionts of deciduous 
shrubs can contribute to soil C loss (Figure 2a).

3  | E VERGREEN SHRUBS— CONTR A STING 
IMPLIC ATIONS

Circumpolar data show that climate sensitivity is greater for tall com‐
pared with low‐statured shrubs (Myers‐Smith et al., 2015) and mod‐
els predict that tall deciduous shrubs will encroach into landscapes 
dominated by graminoids and prostrate shrubs (Pearson et al., 2013). 
Hence, it is not surprising that the term “shrub expansion” often im‐
plicitly refers to an increase in deciduous species, and the conse‐
quences thereof, as discussed above. Despite the fact that relatively 
few shrub studies have focused on evergreen species (Figure 1), there 
is in fact robust evidence that evergreen shrubs are also expanding 
(Elmendorf et al., 2012; Hudson & Henry, 2009; Klanderud & Birks, 

2003; Maliniemi, Kapfer, Saccone, Skog, & Virtanen, 2018; Vowles, 
Gunnarsson, et al., 2017; Vuorinen et al., 2017; Wilson & Nilsson, 
2009). This expansion is surprising considering that stress‐tolerant 
evergreens are generally expected to be slow to respond to envi‐
ronmental change and altered competition (Grime, 2001). However, 
a number of experimental warming studies have shown that species 
such as Empetrum nigrum and Rhododendron subarcticum are more 
responsive to warming than is commonly recognized (Buizer et al., 
2012; Kaarlejärvi et al., 2012; Zamin, Bret‐Harte, & Grogan, 2014).

The ecological consequences of an expansion of evergreen 
shrubs are likely to be very different to those of the aforemen‐
tioned deciduous species. Owing to their low stature, dwarf shrubs 
are unlikely to influence snow cover or, in turn, soil temperatures. 
Furthermore, whereas an increase in recalcitrant stem litter pro‐
duced by deciduous shrubs may increase C storage, which could 
partly offset the effect of changes in albedo and evapotranspiration 
(Cornelissen et al., 2007), the leaf litter produced by evergreen spe‐
cies is generally slower to decompose than that of deciduous species 
(Cornelissen, 1996; Cornelissen et al., 1999). Many evergreen dwarf 
shrubs produce phenolics and tannins that form recalcitrant organic 
complexes while simultaneously slowing down nutrient cycling by 
lowering soil pH (Adamczyk et al., 2016). Accordingly, phenolic con‐
centrations have been found to be higher and the relative microbial 
biomass lower in Empetrum spp. humus than under other ground‐
cover taxa such as Cladonia lichens, which can lead to humus depths 
being many times greater in Empetrum‐dominated systems (Wardle, 
Nilsson, Gallet, & Zackrisson, 1998). By keeping nutrient mineral‐
ization low, evergreen species can help nutrient‐poor environments 

F I G U R E  2   Hypothesized feedbacks relating to deciduous and evergreen shrub increase and the influence of herbivory. The potential 
ecosystem feedback effects associated with deciduous shrub expansion (a) have been extensively discussed, but less attention has been 
given to the consequences of an increase in evergreen dwarf shrubs (b). Through selective browsing, herbivores such as reindeer can 
reduce deciduous shrub cover, leading to an increased abundance of evergreen dwarf shrubs, which may slow down C cycling and increase 
soil C storage. Blue arrows show positive feedbacks and red dotted arrows show negative feedbacks [Colour figure can be viewed at 
wileyonlinelibrary.com]
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stay that way, giving them a competitive advantage over faster 
growing deciduous species (Cornelissen et al., 1999). Slow decom‐
position rates, in turn, result in a long‐term build‐up of ecosystem C 
stocks (Sørensen et al., 2017; Figure 2b).

3.1 | The role of ericoid mycorrhiza

Unlike ECM deciduous shrubs, a majority of Arctic evergreen shrubs 
form ericoid mycorrhizal (ERM) associations. ERM fungi have gener‐
ally been considered to be more efficient decomposers than ECM 
fungi (Read, Leake, & Perez‐Moreno, 2004), but recent research has 
found that ERM fungi may actually facilitate C storage in boreal for‐
est soil (Clemmensen et al., 2015). Many ERM fungi have melanized 
cell walls, which are slow to decompose (Fernandez & Kennedy, 
2018) and lead to an accumulation of fungal necromass in the humus 
layer (Clemmensen et al., 2015). In other words, whereas ECM fungi 
may facilitate rapid turnover of mycelial biomass and necromass, as 
well as efficient N mobilization and C turnover, ERM fungi can cause 
long‐term humus build‐up through the production of melanized hy‐
phae that resist decomposition (Clemmensen et al., 2015). Thus, not 
only recalcitrant plant litter from evergreen shrubs but also associ‐
ated ERM fungi may contribute to a deceleration of C turnover rates. 
An evergreen shrub expansion may in this way directly counteract 
the hypothesized increase in nutrient turnover associated with shrub 
encroachment of tall, deciduous species (Figure 2).

4  | HERBIVORY EFFEC TS ON 
SHRUBIFIC ATION

That biotic factors such as herbivory can influence climate‐driven 
vegetation changes is well established. For example, studies show 
that reindeer can hold back tree line advancement (Cairns & Moen, 
2004) and inhibit the expansion of deciduous shrubs (Olofsson et 
al., 2009; Post & Pedersen, 2008; Vowles, Lovehav, Molau, & Björk, 
2017). Herbivores may also promote less palatable plants through 
selective foraging on preferred species. For example, the selective 
browsing by moose on deciduous tree species has been shown to 
increase the abundance of evergreen species, which produce litter 
of lower quality and decomposability, leading to lower rates of N 
mineralization and ecosystem productivity (Pastor, Dewey, Naiman, 
Mcinnes, & Cohen, 1993). Similarly, dwarf shrubs increased in abun‐
dance under grazing at fertile meadow sites, most likely as a result 
of grazer‐mediated shifts in competition (Vowles, Lovehav, et al., 
2017), but were unaffected by grazing at ericoid‐dominated shrub 
heaths in northern Sweden (Vowles, Gunnarsson, et al., 2017). In a 
study in subarctic Finland, the abundance of evergreen dwarf shrubs 
increased in plots subjected to warming and simulated herbivory, 
while deciduous dwarf shrubs increased in plots only subjected to 
warming. Higher rates of gross ecosystem production and ecosys‐
tem respiration as well as increased C stocks followed the increase 
in deciduous shrubs, but were not found in the plots where decidu‐
ous shrubs were kept in check by simulated herbivory (Ylänne, Stark, 

& Tolvanen, 2015). Consequently, by promoting evergreen shrub 
growth, grazing has the potential to increase soil C stocks in tundra 
soil (Figure 2).

5  | CONCLUSIONS

In order to improve our projections of vegetation feedbacks to fu‐
ture climate change, we believe that an expanded understanding of 
shrubification is needed. The potentially diverging consequences of 
increases in evergreen and deciduous shrubs mean that we must pay 
more attention to the complexity of the below‐ground processes as‐
sociated with these contrasting functional groups and incorporate 
them into climate models. In view of recent findings pointing to the 
important role of mycorrhiza for C cycling, we may require an up‐
graded functional taxonomy that includes not only functional type 
(growth form and deciduous/evergreen) but also mycorrhizal type. 
Furthermore, the role of herbivores as mediators of the opposing 
processes associated with different shrub types, spanning several 
trophic levels, must be taken into account, with more focus on the 
relationship between climatic and biotic factors, in both monitoring 
studies and vegetation projections. We call for more research into 
the following areas:

• The production and turnover rates of different types of mycorrhi‐
zal fungi in Arctic areas.

• The relationship between different mycorrhizal types and soil C 
stocks.

• The effect of herbivory on mycorrhizal fungal communities in the 
Arctic.

• Production and turnover of fine roots of different shrub species 
and their contribution to soil C stocks.

• The role of herbivory as a moderator of competitive interactions 
between shrub types.

• The total effect of climate feedback mechanisms related to her‐
bivory, including greenhouse gas balance, albedo effect, and bio‐
genic volatile organic compounds.

Bearing in mind that Arctic soils contain approximately half of the 
estimated global below‐ground organic C pool (Tarnocai et al., 2009), 
we believe these issues to be of global significance. However, Metcalfe 
et al. (2018) have recently shown that Arctic research is very limited 
by the scarcity and patchy distribution of field measurements. Thus, 
future research needs to include understudied areas of the Arctic, like 
the Canadian archipelago, northern Greenland, and large parts of the 
Russian Arctic (Metcalfe et al., 2018), to improve our understanding 
of ongoing vegetation changes in Arctic ecosystems and their conse‐
quences for global C cycling.
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